Conversion of Modular Numbers to their Mixed Radix Representation by a Matrix Formula

By J. Schönheim

Introduction. Let $m_{i}>1,(i=1,2, \cdots, s)$, be integers relatively prime in pairs and denote $m=m_{1} m_{2} \cdots m_{s}$. If $x_{i}, 0 \leqq x_{i}<m_{i},(i=1,2, \cdots, s)$ are integers, the ordered set $\left(x_{1}, x_{2}, \cdots, x_{s}\right)$ is called a modular number, with respect to the moduli $m_{i}(i=1,2, \cdots, s)$ and it denotes a unique residue class $\bmod m$.

Modular arithmetic has been developed [1], [2], [5], and its use in computers has been suggested [1], [5]. It has also been applied in the solution of various problems [2], [6].

A central question is to determine the least nonnegative residue $\bmod m$ of a given residue class $\left(x_{1}, x_{2}, \cdots, x_{s}\right)$. Denote it by n. In order to work entirely in the given modular system it was suggested [1], [3], [7] and [8] to obtain n in its mixed radix representation with respect precisely to the radices $m_{i}(i=1,2, \cdots, s)$, thus in the form

$$
n=b_{1}+b_{2} m_{1}+b_{3} m_{1} m_{2}+\cdots+b_{s} m_{1} m_{2} \cdots m_{s-1}
$$

where $0 \leqq b_{i}<m_{i},(i=1, \cdots, s)$. In these methods the modular number ($b_{1}, b_{2}, \cdots, b_{s}$) is obtained from the modular number ($x_{1}, x_{2}, \cdots, x_{n}$) sequentially or iteratively.

We propose here (see Theorem) a matrix method which consists in precalculating ($s-1$) matrices, $A_{i},(i=1,2, \cdots, s-1)$, which depend only on the moduli $m_{i}(i=1,2, \cdots, s)$ and in obtaining $\left(b_{1}, b_{2}, \cdots, b_{s}\right)$ by postmultiplication of ($x_{1}, x_{2}, \cdots, x_{s}$) by $A_{1}, A_{2}, \cdots, A_{s-1}$ or more precisely, observing the nonassociativity of the used matrix product, computing:

$$
\left(b_{1}, b_{2}, b_{3}, \cdots, b_{s}\right)=\left[\cdots\left[\left[\left(x_{1}, x_{2}, x_{3}, \cdots, x_{s}\right) A_{1}\right] A_{2}\right] \cdots A_{s-2}\right] A_{s-1} .
$$

This method is simpler than Mann's method [3] and concentrates the sequential Svoboda-Lindamood-Shapiro method [1], [4] in a single matricial formula.

Definition 1. Let $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ be matrices of s columns with integer elements, whose rows may be regarded as modular numbers with respect to the moduli $m_{i}(i=1, \cdots, s)$. Define, provided B has s rows, $C=A B$ as $C=\left[c_{i j}\right]$, $c_{i j}=\sum a_{i b} b_{v j}\left(\bmod m_{j}\right), 0 \leqq c_{i j}<m_{j}$.

This matrix multiplication is not associative in general, but two exceptions are mentioned in the following lemma.

Lemma 1. Let $E=E_{i \nu\left(c_{\nu}\right)}$ (fixed $\left.i, \nu=1,2, \cdots, h<s\right)$ be $s \times s$ matrices having units in the main diagonal, c_{ν} as ν th element in the i th $(\nu \neq i)$ row and zeroes elsewhere. Let D be a diagonal matrix of the same size. Then if X is an arbitrary matrix with s columns and A an arbitrary $s \times s$ matrix, we have:

$$
\begin{align*}
(X A) D & =X(A D) \tag{1}\\
\left(\cdots\left(\left(X E_{1}\right) E_{2}\right) \cdots\right) E_{h} & =X\left(\left(\cdots\left(\left(E_{1} E_{2}\right) E_{3}\right) \cdots\right) E_{h}\right) \tag{2}
\end{align*}
$$

Proof. Properties (1) and (2) are immediate consequences of the definitions.
Received May 18, 1966.

Remark 1. The matrices $E_{\nu}(\nu=1, \cdots, h)$ are generalized elementary matrices.
Notation. Denote $x=\left(x_{1}, x_{2}, \cdots, x_{s}\right)$ if x is an arbitrary number of the residue class $\left(x_{1}, x_{2}, \cdots, x_{s}\right) \bmod m$ and denote $n \equiv\left(x_{1}, x_{2}, \cdots, x_{s}\right)$ if n is the least nonnegative residue of the class.

Lemma 2. If $\left(x_{1}, x_{2}, \cdots x_{s}\right)$ is a modular number with respect to the moduli $m_{i}(i=1, \cdots, s)$ and $n \equiv\left(x_{1}, x_{2}, \cdots, x_{s}\right)$ while

$$
\left(\frac{x_{2}-x_{1}}{m_{1}}, \frac{x_{3}-x_{1}}{m_{1}}, \cdots, \frac{x_{s}-x_{1}}{m_{1}}\right)
$$

means a modular number with respect to the moduli $m_{i}(i=2,3, \cdots, s)$ then

$$
\frac{n-x_{1}}{m_{1}} \equiv\left(\frac{x_{2}-x_{1}}{m_{1}}, \frac{x_{3}-x_{1}}{m_{1}}, \cdots, \frac{x_{s}-x_{1}}{m_{1}}\right)
$$

Proof. $n-x_{1}$ is divisible by m_{1} and since $0 \leqq n<m$, it follows that

$$
0 \leqq \frac{n-x_{1}}{m_{1}}<\frac{m}{m_{1}}
$$

Definition 2. Let $m_{i}^{-1} \equiv m_{i j}\left(\bmod m_{j}\right), i<j \leqq s, 0<m_{i j}<m_{j}$ and put $n_{i j}=m_{j}-m_{i j}$. Let I_{k} be the identity matrix of rank k. Define, for $1 \leqq k \leqq s-1$, $s \times s$ matrices,

$$
A_{k}=\left[\begin{array}{c:ccccc}
I_{k-1} & & 0 & & & \\
\hdashline & 1 & n_{k, k+1} & n_{k, k+2} & \cdots & n_{k, s} \\
& 0 & m_{k, k+1} & 0 & \cdots & 0 \\
& 0 & 0 & m_{k, k+2} & \cdots & 0 \\
0 & & & & & \\
& \vdots & & 0 & \cdots & m_{k s}
\end{array}\right] .
$$

Lemma 3. If $\left(y_{1}, y_{2}, \cdots, y_{s}\right)$ is a modular number with respect to the moduli $m_{i}(i=1, \cdots, s)$, then

$$
\begin{equation*}
\left(y_{1}, y_{2}, \cdots, y_{s}\right) A_{k}=\left(y_{1}, y_{2}, \cdots, y_{k}, \frac{y_{k+1}-y_{k}}{m_{k}}, \cdots, \frac{y_{s}-y_{k}}{m_{k}}\right) . \tag{3}
\end{equation*}
$$

Proof. The matrix A_{k} is the product of the elementary matrices $E_{k, k+1}\left(n_{k, k+1}\right)$ $\cdots E_{k s}\left(n_{k s}\right)$ multiplied by the diagonal matrix

$$
D=\left[\begin{array}{llll}
I_{k} & & & \\
& m_{k, k+1} & & \\
& & \cdot & \\
& & \cdot & \\
& & & m_{k s}
\end{array}\right] .
$$

By Lemma 1 associativity holds and the effect of postmultiplication by A_{k} is the
same as the effect of successive postmultiplications by $E_{k, k+1}, E_{k, k+2}, \cdots, E_{k s}$ and D, which is precisely the right side of (3).

Lemma 4. Let $n \equiv\left(x_{1}, x_{2}, \cdots, x_{s}\right)$ and let $q_{i}, r_{i}(i=1, \cdots, s)$ be the quotients and the remainders in the successive divisions

$$
\begin{align*}
n & =m_{1} q_{1}+r_{1} \tag{4}\\
q_{i} & =m_{i+1} q_{i+1}+r_{i+1} \quad(i=1, \cdots, s-1)
\end{align*}
$$

then
$\left(\cdots\left(\left(\left(x_{1}, x_{2}, \cdots, x_{s}\right) A_{1}\right) A_{2}\right) \cdots\right) A_{k}=\left(r_{1}, r_{2}, \cdots, r_{k}, r_{k+1}, y_{k+2}, y_{k+3}, \cdots, y_{s}\right)$
and

$$
\left(r_{k+1}, y_{k+2}, \cdots, y_{s}\right) \equiv q_{k}
$$

Proof. Proceed by induction on k. Let $k=1$. Then by Lemma 3

$$
\left(x_{1}, \cdots, x_{s}\right) A_{1}=\left(x_{1}, \frac{x_{2}-x_{1}}{m_{1}}, \cdots, \frac{x_{2}-x_{1}}{m_{2}}\right)
$$

hence $r_{1}=x_{1}$ and by Lemma 2,

$$
\left(\frac{x_{2}-x_{1}}{m_{1}}, \cdots, \frac{x_{s}-x_{1}}{n_{1}}\right) \equiv \frac{n-x_{1}}{m_{1}}=q_{1}
$$

Therefore

$$
\frac{x_{2}-x_{1}}{m_{1}} \equiv r_{2} \quad\left(\bmod m_{2}\right) \quad 0 \leqq r_{2}<m_{2}
$$

Suppose the assertion is true for $1<k<h \leqq s-1$, thus

$$
\begin{equation*}
\left(\cdots\left(\left(x_{1}, x_{2}, \cdots, x_{s}\right) A_{1}\right) \cdots\right) A_{h-1}=\left(r_{1}, r_{2}, \cdots, r_{h}, y_{h+1}, y_{h+r}, \cdots, y_{s}\right) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
q_{h-1} \equiv\left(r_{h}, y_{h+1}, \cdots, y_{s}\right) \tag{6}
\end{equation*}
$$

with respect to the moduli $m_{i}(i=h, h+1, \cdots, s)$. Then by Lemma 3 and (5)

$$
\left(\left(\cdots\left(\left(x_{1}, x_{2}, \cdots, x_{s}\right) A_{1}\right) \cdots\right) A_{h-1}\right) A_{h}=\left(r_{1}, r_{2}, \cdots, r_{h} \frac{y_{h+1}-r_{h}}{m_{h}}, \cdots, \frac{y_{s}-r_{h}}{m_{h}}\right)
$$

and by (6) and Lemma 2

$$
\left(\frac{y_{h+1}-r_{h}}{m_{h}}, \cdots, \frac{y_{s}-r_{h}}{m_{h}}\right) \equiv \frac{q_{h-1}-r_{h}}{m_{h}}=q_{h}
$$

Therefore

$$
\frac{y_{h+1}-r_{h}}{m_{h}}=r_{h+1}, \quad 0 \leqq r_{h+1}<m_{h+1} .
$$

Hence the result is true for $k=h$.
Theorem. If $m_{i}, m_{i}>1(i=1,2, \cdots, s)$ are integers, relatively prime in pairs
$m=m_{1} \cdots m_{s}$, and if n is the least nonnegative residue of the class $\left(x_{1}, x_{2}, \cdots, x_{s}\right) \bmod m$ and $b_{1}, b_{2}, \cdots, b_{s}$ are the digits of the mixed radix representation of n with respect to the radices $m_{i}(i=1, \cdots, s)$ then with matrix multiplication and matrices $A_{i}(i=1, \cdots, s)$ as defined in Definitions 1 and 2

$$
\left(b_{1}, b_{2}, \cdots, b_{s}\right)=\left(\cdots\left(\left(\left(x_{1}, x_{2}, \cdots, x_{s}\right) A_{1}\right) A_{2}\right) \cdots\right) A_{s-1} .
$$

Proof. The digits b_{1}, \cdots, b_{s} of the required representation are the remainders of the successive divisions (4) and the theorem is a corollary of Lemma 4 with $k=s-1$.

Remark 2. The above algorithm requires in general $s-1$ matrix multiplications, but if $k<s-1$ and
(7) $\left(\cdots\left(\left(\left(x_{1}, x_{2}, \cdots, x_{s}\right) A_{1}\right) A_{2}\right) \cdots\right) A_{k}=\left(r_{1}, r_{2}, \cdots, r_{k+1}, 0,0, \cdots, 0\right)$
then the right side of (7) is the result, and no further multiplications are needed.
Example. Let 2, 3, 5, 7 be the moduli $m_{1}, m_{2}, m_{3}, m_{4}$. Then the numbers $m_{i j}$, $i<j$ are given by

$$
\begin{array}{lll}
2 & 3 & 4 \\
& 2 & 5 \\
& & 3
\end{array}
$$

and therefore the numbers $n_{i j}$ are

$$
\begin{array}{lll}
1 & 2 & 3 \\
& 3 & 2 \\
& & 4
\end{array}
$$

The matrices A_{1}, A_{2}, A_{3} are

$$
A_{1}=\left[\begin{array}{cccc}
1 & 1 & 2 & 3 \\
0 & 2 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 4
\end{array}\right] ; \quad A_{2}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 3 & 2 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 5
\end{array}\right] ; \quad A_{3}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 4 \\
0 & 0 & 0 & 3
\end{array}\right] .
$$

Let (0200) be a residue class mod 210 . Let n be the least nonnegative residue of this class. Then $b_{1}, b_{2}, b_{3}, b_{4}$, the digits of the mixed radix representation of n, with respect to the radices $2,3,5,7$ are given by

$$
\left(b_{1}, b_{2}, b_{3}, b_{4}\right)=\left(\left((0200) A_{1}\right) A_{2}\right) A_{3}=\left(\begin{array}{lll}
0 & 1 & 3
\end{array}\right)
$$

Indeed $0+1 \cdot 2+3 \cdot 2 \cdot 3+4 \cdot 2 \cdot 3 \cdot 5=140,140<210$ and $140 \equiv 0(\bmod 2)$, $2(\bmod 3), 0(\bmod 5)$ and $0(\bmod 7)$.

Department of Applied Mathematics
Tel-Aviv University
Ramat-Aviv, Tel-Aviv
Israel

1. M. Valach \& A. Svoboda, "Circuit operators," Stroje na. Zpracovani Informaci Sb., v. 111, 1957, pp. 247-297. (Czech)
2. H. S. Shapiro, "Some remarks on modular arithmetic and parallel computation," Math. Comp., v. 16, 1962, pp. 218-222. MR 26 * 4511.
3. H. B. Mans, "On modular computation," Math. Comp., v. 15, 1961, pp. 190-192. MR 22 * 10944.
4. G. E. Lindamood \& G. Shapiro, "Magnitude comparison and overflow detection in modular arithmetic computers," SIAM Rev., v. 5, 1963, pp. 342-350. MR 29 * 6662.
5. A. Svoboda, "The numerical system of residual classes in mathematical machines," Information Processing, pp. 419-422, UNESCO, Paris, R. Oldenbourg, Munich and Butterworths, London, 1960. MR 28 * 5581.
6. J. Borosh \& A. S. Fraenkel, "Exact solutions of linear equations with rational coefficients by congruence techniques," Math. Comp., v. 20, 1966, pp. 107-112.
7. V. N. Teĭtel'baum, 'Comparison of numbers in the Czech system of numbers," Dokl. Akad. Nauk SSSR, v. 121, 1958, pp. 807-810. (Russian) MR 21 *3367.
8. A. S. Fraenkel, On Size of Modular Numbers, Proc. ACM 19th National Conference, Philadelphia, Pa., 1964.
